
A Very High-Speed Digital Number Sieve

By D) G. Cantor, G. Estrin, A. S. Fraenkel, and R. Turn

1. Introduction. The general sieve problem may be stated as follows [3]. Let
M1, M2, **' , M. be s positive integers, relatively prime in pairs. Consider the
congruences

(1) x aij(mod ?n), i = 1,2, ,s;j = 1,2, ,ti < int.

For fixed i, the aij are distinct non-negative integers less than mi . The problem
is to find all integers N between given limits, say

(2) A _ N < B,

such that N is a solution to s of the congruences. (It is, of course, clear that no N1
can be a solution to more than s of the congruences (1).)

Examples: On the one extreme there is the Sieve of Eratosthenes for finding all
primes p in the range A = Bl'2 < p < B, where ti = mi - 1 for all i. (Here iti
are all the primes < B"'.) On the other extreme there is the Chinese remainder
type of problem, where t, = 1 for all i, and there is only one solution among iiJj] ni
numbers.

In between these two extremes, there is the important quadratic sieve,
where roughly ti = mi/2 for all i. It is used in problems involving quadratic residues,
Diophantine equations of second degree and other quadratic type problems.

About thirty years ago, Lehmer [1], [2] constructed a novel special-purpose
device for sifting. It used the first 30 primes as moduli. Its processing rate was

3 X 10' numbers/min.

General-purpose computers are not very well suited to sifting, and the earlier
models could not compete with Lehmer's machine. However, the speed of the more
recent machines makes up for their lack of orientation towards the sieve problem
insofar as surpassing the performance of Lehmer's machine is concerned. Thus,
the rate for a quadratic sieve using the first 30 primes on the IBM 7090 is approxi-
mately

107 numbers/min.

The present paper describes a special-purpose device, where rates in excess of

1010 numbers/min.

can be achieved for quadratic sieves. The device consists of basic digital buildinlg
blocks from which a suitable sieve is assembled for each problem. Thus, by an
appropriate rearrangement of the building blocks, problems with different moduli
can be run. It is also shown that if the device contains a certain minimum amounit
of hardware and is attached to a general-purpose computer, then problems can be
run where, roughly speaking, the number of moduli is not limited any more by the

Received June 23, 1961. The preparation of this paper was sponsored, in part, bw the
Office of Naval Research and the Atomic Energy Commission.

141

142 D. G. CANTOR ET AL

amount of hardware of the special-purpose device, but oniy by the size of the
memory of the general-purpose computer, and the rate is still of the order of 1010

numbers/mmn. We use a so-called "Fixed Plus Variable Structure Computer"
organization for realizing the combination between the special- and general-purpose
computers [6]. This also enables one to use the digital building blocks of the sieve
for building other special-purpose devices which one might want to associate with
the general-purpose computer.

2. Binary Set-Up of the Sieve. For solving the system (1) on a digital computer,
we consider a matrix M of size s X (B - A) with entries cil, (i = 1, 2,. ,s; k = A)
A + 1,1.B-1), defined by

Iiflk ~ajj (mod mi)
Cik

I otherwise (j = 1,2, , tj).

Then every column, all of whose entries are 1, corresponds to a solution, and con-
versely.

Example: Find the primes p such that

(3) 6?<p < 36.

The relevant congruences are x _=1 (mod 2), x =1, 2 (mod 3), x 1, 2, 3, 4
(mod 5). The matrix M is given by

N
'6 7 8 9 10 11 12 1314 1516 17 181920 2122 23 2425 26 2728 2930 3132 3334 35

2 0 1 01 01 01 01 01 01 010 10 1 01 01 01 01 01
3 01 1 01 10 11 01 10 11 01 10 11 01 10 11 01 1

The columns all of whose entries are 1 correspond to the primes in the range (3).
The rows of M are periodic with period min,. Thus, the first ordered mi bits of

the ith row determine the rest of this row completely, and we call them the periodic
pattern ei of mi .

3. Method of Solution on the Special-Purpose Computer. We now give an
iniformal introduction to the principle of operation of the special-purpose device.
It will be observed that the method is based on ideas used in earlier work [1], [2],
[3] in this field.

A first approach to the mechanization of a special-purpose sieve would be to
build a matrix precisely in the form displayed for the example above with observa-
tion posts in every column, detecting coincidences of non-zero bits. Problems which
can be solved by such a procedure are limited to those which can fit into the maxi-
mum size matrix which can be assembled, i.e., computationally trivial problems.

We order the moduli so that

A VERY HIGH-SPEED NUMBER SIEVE 143

Since solutions exist only corresponding to columns with non-zero bits, we may
eliminate the m,-row and many of the components required to detect coincidences,
by establishing coincidence gates only in those columns where the m8-row has
non-zero entries.

Large problems may be handled by constructing only m8 columns of the matrix
and testing for solutions in these columns in parallel. Entering the next batch of m8
numbers turns out to be equivalent to performing prearranged circular shifts in
the s - 1 rows. This procedure would require a matrix of size (s - 1) X in3 with
coincidence gates established in the columns as prescribed above. It is possible to
use such a matrix to define potential solutions even when it is only feasible to
mechanize 1 < s - 1 rows of the matrix, and then have a general-purpose computer
complete the test for solutioln.

The range of problems which may be handled is increased when it is recognized
that the periodic pattern ei associated with the ith row completely determines the
rest of the row. In the following we give an algorithm which defines a procedure
requiring only mi elements in the ith row, giving up only the regularity of the
coincident gate connections. The special-purpose computer consists of basic digital
building blocks or modules which are assembled into a matrix consisting of s - 1
shifting registers, the ith of length mi, and initially containing the periodic pattern
ei (i = 1, 2, ... , s- 1). Observation posts are placed at certain positions in the
matrix which sift out the solutions to (1) among the first m,8 numbers.* Next, a
circular shift is performed in each register, which is equivalent to bringing in the
next m8 numbers to be sifted. This is followed by the observation posts sifting
out the solutions among this new batch of numbers. This process of sifting followed
by shifting is continued until all the numbers are processed.

4. The Algorithm. We divide the numbers N in the range (2) into sets Sn defined
byt

(5) Sn= {N:N<B,N=A+nmS+k;O<k<m6}, 71= B A 1

Thus, each set (except possibly the last) contains m8 numbers.
Let

(6) In. = qimi + ri, 0 < ri <mt (i = 1,2, ,s-1).
With each set S s we associate a matrix Mn1 of size (s - 1) X inm, with
entries cij(n) (i = 1, 2. , s - 1; j = 0, 1, n, n-1), defined recursively by

l7 if O < j < mi and A + j _ai * , ai. ti (mod m)

(0 otherwise.

rCij+rj(n - 1) if 0 < j + ri < mi

(8) Cg,(n) = nCI,J - 1) if 0 < j < in and j + r i ' 01

0 if in8i < < .
* The positioning of the observation posts is determined by t, and its residues in such a

way that a register of length n?, is not required.
t [xl stands for the largest integer < x.

144 D. G. CANTOR ET AL

Equation (8) can be written in the form

cCid(nl- 1) where mi > d-j + ri (mod me), if 0 < j < mi

lo if mi ?j< iMn.

Hence (7) and (8) are equivalent to

(9) cij(n)
1 if 0 <j <mi and A + ai - nri (mod mi)

{0 otherwise (v; = 1,2, * * t;).

If N e S. is a solution to the system (1), then by (5),

(10) A + k -a8,,,8 (mod m8) (O < k < m8; v8 = 1 2, ,ts)

for all n.
By (5) and (6) we have also

(11) A+k-a i,i -nr;(modmi) (v,= 1,2,**. ,It;i 1, 2, ,s- 1).

Hence, if we let

(12) k=wim;+u , 0<ui<mi (= 1, .. Is- 1),

then by (11),

A + ui aj, - nri (mod mi) (vi = 1,2, *** t ;i = 1,2, *** ,s- 1),

so that

(13) c; U, (n) =1

fori= 1, ,s-lby(9).
Also the converse holds. That is to say, if (13) holds for i = 1, *',s- 1

(where u. is given by (12) and k by (10)), then

(14) N = A + nm8 + k

is a solution to the system (1). This is the basis of the algorithm. We list the t,
solutions ki, * * *, kl, of (10), and for each of them its corresponding s - 1 values
ui. Then the numbers N = A + nm, + kI, (v, = 1, * *, tI) for which (13) holds
for i = 1, * - - , s - 1, are solutions to (1), and these are all the solutions.

Example: Find all solutions in the range

-15 ? N < 25

to the system of congruences

x-1 (mod 2)
x--1,2 (mod3)
x-2, 3, 4 (mod 5)
x-0, 1, 2,5 (mod 7)
x _ O 1, 8, 9 (mod 1 1).

Reference is made to Table I. The matrix 111o is constructed according to (7)
(omitting all strings of zeros). Equation (8) implies that the ith row of matrix
MI is obtained from the ith row of M-,, by means of circularly left shifting the

A VERY HIGH-SPEED NUMBER SIEVE 145

TABLE I

The Matrices for the Problem

\\N -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5
i J 0 1 2 3 4 5 6 7 8 9 10

1 1 0
2 0 1 1 Mo
3 0 0 1 1 1
4 0 1 1 1 0 0 1

\\N -4 -3 -2 -1 0 1 2 3 4 5 6
i X\J 0 1 2 3 4 5 6 7 8 9 10

1 0 1
2 1 0 1 ml
3 0 1 1 1 0
4 0 0 1 0 1 1 1

\N 7 8 9 10 11 12 13 14 15 16 17
i \J 0 1 2 3 4 5 6 7 8 9 10

2 1 1 0 Ml2
3 1 1 1 0 0
4 1 1 1 0 0 1 0

\N 18 19 20 21 22 23 24
i X\J 0 1 2 3 4 5 6

1 0 1
2 0 1 1 M3
3 1 1 0 0 1
4 0 1 0 1 1 1 0

first mi bits by ri positions (or by circularly right shifting them by mi - ri posi-
tions). In the present case, ri = 1, r2 = 2, r3 = 1, r4 = 4, so that in passing from
one matrix to the next, the first row is shifted left circularly by 1 position, the
second by 2, the third by 1 and the fourth by 4 positions. This is the way M1,
M2 and M3 are obtained.

The values k1, k2, k3, k4 of Table II are computed by (10), and the corre-
sponding values of ui by (12). Table II defines a pattern of observation stations
which sift out the solutions in each matrix; the entry ui represents the column co-
ordinate corresponding to the row coordinate i, at which an observation station
exists. In Mo, the observation pattern ui = 0, 2, 2, 2 indicates a solution, since all
matrix positions corresponding to that pattern are filled by l's. They appear in
bold type in Table I. The corresponding value of k is k4 = 2. The solution is, there-
fore, N - -15 + 0 X 11 + 2 = -13 by (14). The only two other solutions

146 D. G. CANTOR ET AL

TABLE II

Observation Posts for the Problem

mi~~~~~U
k1 = 4 k2 = 5 k3=1 k4 = 2

1 2 0 1 1 0
2 3 1 2 1 2
3 5 4 0 1 2
4 7 4 1 5 1 2

FiG. 1.-'Conventional Shift Register.

are found in M3, for k3 = 1 and k2 =5, also indicated by bold type in Table I.
They are N = 15 + 3 X 1 1 + 1 =9 land N = 15 + 3 X 11 + 5 =23.

5. The Special-Purpose Computer. The special-purpose device should be
flexible enough to allow usage of different moduli. Therefore the basic building
blocks of the device are modules consisting of memory elements and gates which
will be assembled into the appropriate-size shifting registers and sets of and-gates
for each problem. The and-gates are the realization of appropriate combinations
of the observation posts, and test for coincidence of l's.

The example of the previous section suggests the construction of the device.
Its central part con-sists of shift-registers R1, , .. , R81_,, the ith of length mi ,
which will store the matrices M,, (without the trailing strings of 0's). Register Ri
will shift circularly left by ri positions. It is important to note, however, that this
can be effected in one shift time, rather than in ri, shift times, and further, that the
wiring can be so arranged that any transmitting memory element is adjacent to
its receiver. In order to do this, we rename the memory elements in Ri so that
element number 0 is at the left, followed by element number r, , followed by num-
ber 2ri (mod mO), by 3ri (mod mi), etc. Then each transmnitting element is adjacent
to its receiver, and every element will appear exactly once. Fort (min ,, n) =1

so that also (min, ri) =1(1, ,s -1). Hence ri generates the additive

cycli c group of non-negative integers (mod min) and every element appears exactly
once in the register.

Example: Suppose that for a certain sieve problem m, = 23, and mi = 10 for
some i < s. Then Ri has to shift circularly left by ri = 3 positions. On a conven-
tional shift-register, three shifts of the type indicated in Figure 1 would have to be
performed. The same result can be obtained in one shift time by the specially
wired-up register of Figure 2. However, the long wiring has an undesirable effect
on the speed of the system. Renaming the memory elements as in Figure 3, the
three shifts can be done in one shift time with conventional wiring.

t (a, b) stands for the greatest common divisor of a and b.

A VERY HIGH-SPEED NUMBER SIEVE 147

Fig. 2.-Specially Wired-Up Register for Performing a Shift of Three Positions in
One Shift Time.

FIG. 3.-Final Form of the Register.

The second part of the special-purpose device consists of t, sets of and-gates,
one set for each value of k which is a solution to (10), "anding" together positions
cij in the registers, as defined in the previous section. Also a counting register R
with capacity > (B - A)/mn, and a shift control are required. (The shift control
does not normally have to be reconstructed for every problem.) The register R
contains the value n of the matrix Mn currently being sifted.

The sifting process consists of the following steps.
1. Clear R.
2. Load R1, * , R,-, with Mo, whose entries are defined by (7).
3. Record n and record the values k for which coincidence is obtained, i.e.,

the values k associated with the sets of and-gates which are excited, if any. The
corresponding solutions are given by (14).

4. Advalnce R by unity and perform a circular shift in each shift-register
according to the above scheme. This effectively reloads the registers with the next
batch of n8, numbers to be sifted.

5. Terminate process if n > (B - A) /mn . Otherwise go back to 3.
It is thus seen that in this process m, numbers are processed per shift time.

6. The Sieve in a Fixed Plus Variable Structure Computer. It was remarked
by Lehmer that special-purpose equipment attached to the arithmetic unit of a
fast computer can speed up computation of permutation problems [4], and of other
problems [5]. More generally, we consider a so-called "Fixed Plus Variable Struc-
ture Computer" (to be designated by (F + V) computer), which consists of a
conventional digital computer (the fixed part to be denoted by F), and a set of
modules (the variable part to be denoted by V). Many problems contain a part
which can be solved on a special-purpose computer in a much more efficienit way
than on a general-purpose computer. For such a problem, the modules are assembled
into a suitable special-purpose device which hanidles this part. The rest of the prob-
lem is handled by F. A supervisory control coordinates the operation of the two
computers. However, the special-purpose configuration is not retained permanently,
but may be reorganized into other configurations for other problems. For a more
detailed description of the concept of the (F + V) computer, the reader is referred
to the literature [6].

The special-purpose device described above has a limited amoulnt of hardware.

148 D. G. CANTOR ET AL

V F

|R, I,_ie+

l :t |-| ~~~~~~~~~~MEMORY|l

X 'k- REGISTER_

FIG. 4.-(F + V) Computer Organization for the Sieve Problem.

For certain problems it may be desirable to use more moduli than can be mech-
anized with the available hardware. In order to handle such problems, we imbed
the special-purpose device in an (F + V) computer. This allows, as will be shown
subsequently, handling problems in which the number of moduli is limited only
by the number of periodic patterns es of mi that can be stored in the memory of
F, provided that the hardware of V is sufficient to mechanize the first 1 of the s
moduli. The parameter 1 depends on the relative number of l's and O's in the
periodic patterns of the sieve, and on the relative speeds of F and V. The use of
F + V also allows using the modules for building special-purpose devices other
than the sieve, and attaching them to F.

Figure 4 shows the organization of the (F + V) computer for the sieve problem
by means of a block diagram. The V-part, which acts as the special-purpose device,
mechanizes the first 1 moduli. The k-register records the values of k (the solutions
of (10)) corresponding to coincidence. The periodic patterns el+,, X e8 of
ml+, * ... , m8 are stored in the memory of F. N\imbers will be sifted in V, and when
coincidence occurs, the contents of R and of the k-register are transferred to F,
where so-called solution candidates N of the form (14) are formed, one for each
value of k. Then divisions of the form

(15) N = oimi + pi, 0 Pi < mi (i= + 1, ,S)

are performed in F. The residue Pi determines uniquely the position of the bit of
the periodic pattern ei of mi corresponding to N. The number N is a solution if
and only if these bits are 1 for i = 1 + 1, * , s. Thus, the (F + V) computer
is so organized that V will do the high-speed sifting, and F will do divisions. 1 will
be chosen so that the average time per coincidence in V is at least as large as the
average division time per coincidence in F. Then V would normally do its divisions,
until such time when coincidence is obtained in V. At such time, V is interrupted

A VERY HIGH-SPEED NUMBER SIEVE 149

and the transfers from V to the memory of F occur, the latter acting as a buffer,
capable of storing "bursts" of solution candidates which V might produce occa-
sionally. After the transfers, both parts are again decoupled and assume their
respective tasks. The program for V is outlined in the following six steps.

1. Clear R.
2. Load R1, * , R,-, with Mo.
3. Check for coincidence. If none is obtained, go to 5. Otherwise continue with 4.
4. Interrupt F and V. Transfer the contents of R and of the k-registers to the

memory of F.
5. Advance R by unity and perform a circular left shift of ri places in RX (i -

1, ... , 1 - 1).

6. Terminate process if n > (B - A) /nl . Otherwise go back to 3.
The program for F is simply to produce solution candidates N of the form (14),

and to perform divisions of the type (15) for each of them until the first 0-bit is
encountered. If none is encountered, N is recorded as a solution.

7. Speed and Hardware. The speed and hardware requirements will now be
discussed in terms of an example, for which we choose a quadratic sieve problem
where the moduli are the first s primes. The first column of Table III contains
values of the independent variable 1, the number of moduli mechanized in the
special-purpose device. The table displays the speed and hardware requirements
for such a sieve as a function of 1. The second column contains the lth prime. Let
t be the total time required for performing the coincidence test and the subsequent
circular shifts in the registers. Using the register organization described in Section
5, the circular shifting amounts to a left shift of one position in each register. We
assume transistorized circuitry, for which

t = 0.2 ,u sec

is chosen (speeds approximating those of the IBM 7090). Thus, mnl numbers are
processed in this time if no coincidence occurs. (If the registers are of the double-
rank type, both ranks will be equipped with sets of and-gates, and t = 0.2 p sec
is the time for a coincidence check and for transferring one rank into the other.
Thus also in this case mnl numbers are processed in 0.2 ,u sec.)

We consider first the case s = 1, that is, we use only a special-purpose computer
without a conventional general-purpose computer. Assuming the solutions to be
sparse, so that we may neglect the time of recording them, the rate of the sieve is

=6X107 X=ma = 3 X 108 X ml numbers/min.

These values are displayed in the third column.
Since the sieve is quadratic, the probability of any randomly selected bit in the

periodic pattern et to be 1 is about 0.5. Hence, on the average, one coincidence is
obtained per 2a numbers sifted, or every

6 X 107 X 21 21
7 V

- ,u sec.
v 5mc

These vralues appear in the fourth column.

150 D. G. CANTOR ET AL

If s > 1, divisions have to be performed in F. The probability that exactly i
divisions suffice to decide whether any solution candidate N has to be rejected or
accepted is (K2)' (1 < i ? s - 1). Hence the expectation of the number of divi-
sions for each N is given by

8-i

(16) = Ei/2' = 2- (s -1 + 2)/28-.

Thus the average number of divisions for each solution candidate approaches 2
asymptotically from below. Assuming the IBM 7090 as the fixed machine F, this
division subroutine takes about 200 /L sec for two divisions. Also, preliminary studies
of the mode of transfer from V to the 7090 indicate that the transfer of the con-
tents of R and of the k-register requires no more than 7 , sec. (See appendix.) That
is, this is the maximum time during which V is idle. F is interrupted only insofar as
it requires memory access during this time. Actually, V could already resume its
operation after the transfer of n from the R-register. It would have to wait additional
time only if a new solution candidate is formed before the current contents of the
k-register has been stored away, which is a rare event. However, in our computation
of the overall speed of the sieve we assumed that V is interrupted for 7 , sec. during
each transfer.

Thus, the average overall rate of the sieve is given by

V
W = 1 + 7/r numbers/min.

for r _ 200 A sec. If r < 200 u sec, V will have to wait for F, and the average
overall rate for this case is

17 V
W= 200 1 + 7/ numbers/min.

Thus, the operation of the sieve becomes rapidly more and more inefficient as T

decreases below the critical value of 200 u sec. The values of w appear in the fifth
column of Table III. The last column displays the required number h = El mi
of memory elements for the special-purpose device. (This number has to be doubled
if the registers are of the double-rank type.)

The lower bound for 1 in Table III was chosen to be 9 because for 1 = 8 the
rate would already be less than can be achieved with conventional present-day
computers. The upper bound was chosen by setting arbitrarily a hardware con-
straint of 1500 memory elements.

The lowest value of r for which r > 200 , sec is r = 247.3 u sec. Thus V should
contain at least 15 registers consisting of 328 memory elements. Figure 5 displays
the overall rate as a function of required memory elements. Two simple conclusions
can be drawn from the monotonicity of w as displayed in Figure 5. First, 1 should
be chosen as large as possible. That is to say, as much hardware as available should
be thrown in to build the sieve; even so the cooperation between F and V becomes
less efficient as 1 increases beyond the critical value of 16, in the sense that F be-
comes more idle. Secondly, the use of slower memory elements is indicated if a
larger number of them is available, hence the possibility of using magnetic core
registers.

A VERY HIGH-SPEED NUMBER SIEVE 151

TABLE III

Speed and Hardware as a Function of I For a Quadratic Sieve

I-No. of Moduli mite vNmes vNumbers/ h-Number of
Implemented in mIthe Mn v-Numersf! Average Time Min Rate of Memory Ele-
Special-Purpose Modulus Sieve if = Per Coincidence Sieve if s > I ments in Special-

Device Purpose Device

9 23 6.9 X 109 4.5 A sec 5.70 X 107 77
10 29 8.7 X 109 7.1 A sec 1.56X 108 100
11 1 31 9.3 X 109 13.2 A sec 4.03 X 108 129
12 37 1.11 X 1010 22.1 At sec 9.28 X 108 160
13 41 1.23 X 101? 39.9 A sec 2.09 X 109 197
14 43 1.29 X 101? 76.2 A sec 4.49 X 109 238
15 47 1.41 X 1010 139.4 A sec 9.34 X 109 281
16 53 1.59 X 101? 247.3 A sec 1 .54 X 1010 328
17 59 1.77 X 101? 444.3 A sec 1.73 X 1010 381
18 61 1.83 X 1010 859 A sec 1.81 X 1010 440
19 67 2.01 X 101? 1.6 m sec 2.01 X 1010 501
20 71 2.13 X 1010 2.9 m sec 2.13 X 1010 568
21 73 2.19 X 101? 5.7 m sec 2.19 X 1010 639
22 79 2.37 X 1010 10.6 m sec 2.37 X 1010 712
23 83 2.49 X 101? 20.2 m sec 2.49 X 1010 791
24 89 2.67 X 101? 37.7 m sec 2.67 X 1010 874
25 97 2.91 X 101? 69.2 m sec 2.91 X 1010 963
26 101 3.03 X 1010 132.9 m sec 3.03 X 1010 1060
27 103 3.09 X 101? 260.6 m sec 3.09 X 1010 1161
28 107 3.21 X 101? 501.7 m sec 3.21 X 1010 1264
29 109 3.27 X 101? 985.1 m sec 3.27 X 1010 1371
30 113 3.39 X 101? 1900 m sec 3.39 X 1010 1480

By (16), the average number of divisions per solution candidate in F is less
than 2, whatever the number of periodic patterns that are stored in F. Therefore,
the rate w of a quadratic sieve is practically independent of s, and the number of
the moduli is limited only by the number of periods that can be stored in F. A
similar remark applies also for sieves that are "less than quadratic," i.e., where
the number of l's in ei is < mi/2. For these types of sieves there are even less
divisions to be performed, and a higher overall rate is obtained. For sieves that are
"more than quadratic," and in particular for those which approach the type of
sieve of Eratosthenes, more than two divisions are required on the average, and a
higher critical value of 1 is obtained.

Variations of the above described method which result in even higher speeds
(and therefore involve higher critical values of 1) are clearly possible. For example,
two moduli may be combined in V, say ml and ml-,, by initially solving the two
congruences involving ml and ml-, manually or on F. Then mnml-, numbers can be
processed per shift time, for which tit,-, sets of and-gates are required. Registers ml
and m1_1 do not have to be built of course. As another example, we might mechanize
the moduli ml M2, , Ml_l, M. in V, rather than ml M2, , I ml, so
that m8 numbers instead of only ml are processed per shift time.

152 D. G. CANTOR ET AL

35

0
0

0
0

3C 0
0

0

o 01

0 ~ ~ ~ ~ ~ ~ ~ h _

20~~~~~~~

0 0~~~~~~
z 0~~~~~

20

z

0~~~

NUMBER OF MEMORY ELEMENTS

FIG. 5.-Rate of Sieve as a Function of the Number of Memory Elements.

Similarly, two moduli may be combined in F. For example, combining mz+1
with m1+2 and m1+3 with mz+4 (which increases storage requirements in F), and
using as divisors the moduli m1+1m1+2,X m1+3m1+4,X mz+5, X. , mS X the average
number of divisions that have to be performed approaches 11/8 asymptotically
from below. Thus, the effect of combining moduli in F is to lower the critical value
of T. Such a procedure would therefore be used when the available hardware in V
is smaller than required for keeping up with the speed of F implied by an average
of two divisions per solution candidate.

The high speeds which can be achieved by our method suggest its applicability
for conversion of numbers from the modular number representation [7] to the
conventional polyadic representation. Since this problem is of the Chinese remainder
type, it seems possible to include in the sieve special solution hunting properties.

8. Conclusioft. A method has been presented to sift numbers satisfying a set of
linear congruences from among a large set of numbers. The important properties
of the resulting special-purpose device are that a relatively large set of numbers is
processed essentially within the time required for performing a shift of one positio
in an ordinary shift-register, and that no memory references are necessary. This
leads to an overall speed gain of about three orders of magnitude over modern

A VERY HIGH-SPEED NUMBER SIEVE 153

present-day computers such as the IBM 7090. By combining the device with a
general-purpose computer, the size of problems that can be run is greatly increased
with almost no decrease in speed.

Appendix

The Division Subroutine. For the purposes of this subroutine, written for the
IBM 7090, we restrict the size of N in (2) to a number representable by 72 binary
bits.

The first 36 of these are called HW, and the last 36 are called LW. The core of
the subroutine consists of the following sequence, where it is assumed that the
accumulator is cleared at the beginning. Every bit of the periodic patterns ei is
stored in a separate word, denoted by WM, and the corresponding period is stored
in M.

LDQ (Load the MQ) HW
DVP (Divide) M
LDQ (Load the MQ) LW
DVP (Divide) M
PAC (Place complement of address 0, 4

in index register)
CLA (Clear add) WIIll 4
TMI (Transfer on minus) OUT

This sequence requires 36 cycles. For a quadratic sieve, the sequence has to be per-
formed twice on the average for each solution candidate. Another 20 cycles are
required for performing the multiplication and addition implied by (14) and
bookkeeping. One cycle takes 2.18 , sec. Thus the subroutine requires about 200
, sec.

Transfers from V to F. A preliminary study of the(F + V) organization based
on the IBM 7090 as F indicates that transfers from V to F can be effected in the
manner of a data channel. Such a channel has a "Channel Address Counter"
(CAC), from which addresses are transferred to the "Memory Address Register."

Suppose that the memory region bounded by addresses K and K + Al is al-
located for storing the value n contained in R, and L to L + MI for storilng the
contents of the k-register. We assume, for simplicity, that registers R and k do
not exceed 36 bits. In its normal form, the CAC contains an address of the form
K + i (0 < i < M). Three flip-flops FF1, FF2, FF3 are contained in SC. FF1 re-
cords whether F or V was the last user of the buffer region of the memory. FF2
and FF3 define "full" and "empty" conditions of the buffer.

We adopt the following operating rules.
1. When V wants to store into the memory, the CAC is advanced by I if FF1 = 1,

and remains unchanged if FF1 = 0. Then n is stored at the address currently held
in CAC, say K + i. Next CAC is changed to L + i, and the contents of the k-reg-
ister are stored. Then CAC is set back to K + i. After execution of these stores,
FF1 is set to 1.

2. When F wants to fetch a pair of new values from the memory, the CAG is
decreased by 1 if FF1 = 0, and is left unchanged if FF1 = 1. The address (con-

154 D. G. CANTOR ET AL

tents of CA C) is forced into the F Memory Address Register a.s a consequence of
recognition of a special instruction in F by the Supervisory Control. Both the
value n and the corresponding contents of the k-register are then fetched by the
previously described K - L interchange, and CA C is set back to K + i. At the end
of the fetching operations, FF1 is set to 0.

Thus F always handles first the latest information brought in from V. If at any
time CAC holds the address K + M, and if FF1 = 1, then FF2 is set, which pre-
vents V from storing into the memory. (Of course for sufficiently large 1, such an
occurrence is very rare.) FF2 is reset by the resetting signal of FF1. If at any time
CAC holds the address K, and if FF1 = 0, then FF3 is set, which prevents F from
fetching. FF3 is reset by the setting signal of FF1.

Preliminary studies of this mode of transfer indicate that transfer of the first
word takes at most two cycles, and the second takes one cycle. Thus the transfer
of n and the contents of the k-register from V to F requires approximately 7 ,u sec.

Department of Mathematics
Princeton University
Princeton, New Jersey

Department of Engineering
University of California
Los Angeles 24, California

Department of Mathematics
University of Oregon
Eugene, Oregon

Department of Engineering
University of California
Los Angeles 24, California

1. D. H. LEHMER, "A photo-electric number sieve," Anmer. Math. Mlonthly, v. 40, 1933,
p. 401-406.

2. D. H. LEHMER, "A machine for combining sets of linear congruences," Math. Ann. v.
109, 1934, P. 661-667.

3. D. H. 6LEHMER, "The sieve problem for all-purpose computers," MTAC, v. 7 1953,
p. 6-14.

4. D. H. LEHMER, "Teaching combinatorial tricks to a computer," Proceedings of Symposia
in Applied Mathematics, v. X, American Mathematical Societv, Providence, RI., 1960, p.
1 79-193.

5. D. H. LEHMER, private communication, June 1960.
6. G. ESTRIN, "Organization of computer systems-the fixed plus variable structure com-

puter," Proceedings of the Western Joint Computer Conference, May 1960, p. 33-37.
7. A. SVOBODA, "Rational numerical system of residual classes." Stroje Na Zpracovani

Informaci. (Czechoslovakia), v. 5, 1957, p. 9-47.

	Cit r9_c9:

